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Outline 

• Background:  Cure Below TG and Its Effect on Structure-
Property Relationships in Thermosetting Polymer 
Networks 

• Tools:  Differential Scanning Calorimetry 
• Results: 

– Isothermal Cure Kinetics 
• Validity of TG Estimation by DSC 
•  Results for Dicyanates (BADCy) and Tricyanates (ESR-255) 

– Non-Isothermal Cure Kinetics 
• Dimensionless Analysis 

• Implications for Composite Process Development  
 

Acknowledgements: Air Force Office of Scientific Research, Air Force 
Research Laboratory, PWG Members 
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Cyanate Esters for Next-Generation  
Aerospace Systems 
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Thermosetting Polymers Have a TG 
Envelope – Not Just a TG 
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• The glass transition temperature of a thermoplastic such as PVC exhibits a nearly fixed value 
regardless of processing-induces changes to the system 

• In contrast, the glass transition temperature of a thermosetting polymer can vary over a wide 
range of temperatures depending on how the polymer is processed   

• For cyanate esters, the bounds of the TG envelope are typically well-defined because of the 
well-defined cure chemistry 
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The Envelope May Be Unknown – 
Some Monomers Can Not Cure Fully 

5 

• Essentially, ESR255 forms such a rigid macromolecular network that the molecular strain 
energy needed to connect all the loose ends is great enough to break the chemical bonds, 
so “full cure” simply is not geometrically possible 

• Since achieving complete cure is critical for the long-term hydrolytic stability of cyanate 
esters, a monomer such as ESR255 is actually too rigid by itself 

• Even if they can be fully cured, rigid cyanate esters often require very high temperatures 
and/or active catalysts (which hurt stability) to cure effectively 
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A Large diBenedetto Envelope Means TG 
Exceeds Tcure at Late Stages of Cure 

6 

• Vitrification slows down conversion, but does 
not stop it completely 

• Under isothermal conditions, the rate of 
conversion will fall as conversion increases, 
but the sensitivity of TG to conversion will 
rise, resulting in a fairly constant rise in TG 

• The greater the sensitivity, the further TG can 
rise above Tcure 

T-Cure (°C) 125 150 170 200 

BADCy 134 168 -- 246 

LECy 142 183 213 -- 

SiMCy 152 186 -- -- 

TG (°C) of Cyanate Esters Cured 12 h 
 

BADCy (Catalyzed) 

Size of “gap” scales 
with diBenedetto 
envelope 

*catalyst consists of 160 ppm Cu(II) as Cu(II)AcAc  with 2 
phr nonylphenol 
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“Vitreous Cure” Differs Markedly from Main  
Stage Cure  
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• Cure results in: 

• Net Shrinkage 

• Less permeability 

• Higher modulus 

• Brittleness 

Main Stage Thermal Cure 

“Vitreous Cure” 

Heat 

Heat 

Cure 

Cure 

• Cure results in: 

• Net Expansion 

• Higher permeability 

• Lower modulus 

• Toughness 

• “Vitreous Cure” is promoted by rigid network segments with well-distributed extensibility, and by 
cure temperatures that are low in comparison to TG  

• Both types of cure can happen sequentially, simultaneously, or in mixed form 
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Indirect Measurement of TG via DSC and 
diBenedetto Equation  

• Conversion computed via: 
  α(t) = ∆H(t) / [ ∆H(tmax) + ∆Hr ] 
• TG computed via: 
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Cyanate Ester Monomers Used 
in DSC Cure Study 

• BADCy was the first-commercialized cyanate ester; it is least expensive and has the 
largest property database 

• ESR-255 was originally synthesized and characterized by Shimp; it has the one of the 
highest “TG∞” values known (note that chemical degradation takes place well below TG∞, 
thus the parameter is meaningful only as an estimate of the sensitivity of TG to conversion. 
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Name TG0(°C)* 

 
TG∞ (°C)* λ Catalyst 

Added? 
BADCy -38 ± 1 300 ± 3 0.38 ± 0.04 Yes 
ESR-255 -9 ± 10 558 ± 40 0.32 ± 0.04 No 

*catalyst consists of 160 ppm Cu(II) as Cu(II)AcAc  with 2 phr nonylphenol 

CH3H3C

OCNNCO

“BADCy” 
“ESR-255” 

OCNNCO
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Indirect Measurement of TG via DSC: 
Measurement Uncertainties 
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Data is for 
uncatalyzed 
ESR-255 
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If DSC measurements were used to generate diBenedetto 
parameters, then there is a canonical relation for the error in 
TG measurement due to all parameters combined. 

• Even though the error in TG estimation is large in this case, it is clear that ESR-255 will 
cure to a TG substantially higher than the cure temperature, and that the change in TG 
with time is substantial even during the post-vitrification period 

• Baseline effects become more important than diBenedetto parameter uncertainties after 
1-2 hours of isothermal cure  

• Sensitivity analysis is the easiest way to determine effect of baseline uncertainties 
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Comparison of Indirect and Direct TG  
Measurements via DSC 

11 

• “Hind-casting” TG values becomes uncertain when the ratio of elapsed time at the point 
of “hind-cast” to the total time used to measure cure becomes small, due to baseline 
uncertainty effects that tend to cancel one another at longer relative times 

• When uncertainties are properly considered, there is no major discrepancy with 
observed values, although all large errors were under-predictions 

 

Source (Pred. from iso. DSC run, 
or “observed” ) 

TG after curing for temp. (°C) / time (min.) 
150/60 150/120 150/720 200/30* 200/720* 

Pred.  150 °C / 60 min. 107 ± 9 -- -- -- -- 
Pred.  150 °C / 1200 min. 114 ± 9 143 ± 9 -- -- -- 
Pred.  150 °C / 720 min. 90 ± 22 114 ± 24 170 ± 14 -- -- 
Pred.  200°C / 30 min.* 113 ± 9 -- -- 174 ± 9 -- 
Pred. 200°C / 720 min.* 120 ± 22 -- -- 192 ± 36 229 ± 8 
Observed TG  110 144 168 206 246 

 

Data for catalyzed BADCy 

* Two step cure in which step 1 is 150 °C for 60 minutes 
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Data is for 
catalyzed BADCy Isothermal at 150 ºC for 720 

minutes 
Initial heating 

• The most common forms of kinetic analysis involve tracking key parameters with respect to 
conversion (α) 

• Reaction rate (most models indicate proportionality to (α – α0)-2, combined with nonlinear 
increase in TG with α, results in a nearly linear change in dTG/dt with α, and an intercept at a 
conversion of 0.75 (TG = 142 °C) 

• At 150 °C, cure rates are so slow that, after vitrification, the cure kinetics cannot be resolved, 
with uncertainty of around 3-5 x, and even slight baseline shifts overwhelming the signal 
(Note:  error bars generated by sensitivity analysis, and are systematic within series) 

 

Tcure = TG 

Tcure = TG 
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Data is for 
catalyzed BADCy 

Isothermal at 200 ºC for 
720 minutes Initial heating 

• Again, roughly linear change in dTG/dt with conversion with an intercept at a conversion of 
0.87 (TG = 203 °C), but note that the final TG is in fact much higher, at 246 °C 

• At 200 °C, cure rates are high enough that, even with a systematic 5-10 x uncertainty, there 
appears to be a significant slowing of cure (but not a complete stop) due to vitrification, which 
can be described by a simple “activated mode” Arrhenius model 

• A ~0.1 °C / min. increase in TG after vitrification, with a 10x rate reduction for every ~25 °C 
increase in TG, is consistent with observed behavior 

 

Tcure = TG 

Tcure = TG 

Isothermal at 150 ºC 
for 60 minutes 

Ramp to 
200 ºC  
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• Isothermal steps help to smooth 
spatial variations and ensure 
conversion targets are reaches 

• Complete conversion is desired 
but often not achieved as TG > Tcure 

• TG usually measured after the fact 
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• Continuous ramp used to complete 
wide scan of possible temperature 
values in a short time; heating rate 
still limited by thermal gradients 

• No change in conversion is desired 
during heating, but in-situ cure 
happens anyway 

• Measured TG may not be accurate 
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• Only when the scan temperature and TG coincide is a signal generated.  For 
thermoplastics, with a TG that does not change, this fact is trivial, but for 
incompletely cured thermosets, it matters a great deal! 

• Note how the TG increases almost as fast as the scan temperature during residual 
cure 

TG = Tscan 

Data is for catalyzed BADCy 

Residual Cure 

Complete Cure 
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• No clear signal corresponding to a TG is observed in DSC traces, either during, or after, 
residual cure 

• Note how the TG increases fast enough that it never coincides with the scan temperature 
over the given range 

• The “moving target” nature of the TG means that the uncertainty in the “as cured” value 
remains, although the model indicates that the onset of heat flow is a reasonable guess 
for the “as cured” value  

TG = Tscan 

Data is for 
uncatalyzed 
ESR-255 

Residual Cure 
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 Dimensionless Analysis of TG 
Evolution During Residual Cure 

17 

• The dimensionless group represents the ratio of the rate at which TG increases to the rate 
at which sample temperature increases during residual cure 

• When the value of this group is larger than one, the TG can “outrun” the sample heating, 
leading to large measurement errors 

• As the value of this group approaches zero, the TG becomes stable over the time scale of 
the heating experiment and is accurately recorded. 

• Using typical values for dα/dt and λ, the heating rate needed to avoid significant risk of in-
situ cure (in °C / min.) is roughly 0.07 * (TG∞ - TG0), or roughly 25 °C / min. for BADCy, and 
roughly 40 °C / min for ESR-255.  These are roughly consistent with experience. 

dα/dt = reaction rate (variable with conversion, 
generally ~2% / minute or less after vitrification) 
TG0 = monomer glass transition temperature (-50 
to 0 °C typical for cyanate esters) 
TG∞ = glass transition temperature of fully cured 
network (may not be physically meaningful, 
typically 250 – 550 °C for cyanate esters) 
λ = diBenedetto parameter (typically 0.3 for 
cyanate esters, dimensionless) 
dT/dt = heating rate 

Key dimensionless group: 

(dα/dt) (TG∞-TG0) 

λ(dT/dt) 
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 Example:  TG Measurements for 
ESR-255 Cured 24 hrs at 210 °C 

18 

• Using a heating rate that is too slow causes a 
very significant over-estimate of TG 

• Note that the effects of residual cure are 
clearly visible in the TMA traces, and include  

• Overly broad tan delta peak with 
noticeable low-temperature shoulder 

• Increase in storage after TG (circled) 
• Using DSC in combination with TMA, it is 

clear that the “as cured” TG cannot be 300 °C 
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Implications for Composite 
 Resin Development 

• A key feature of cure schedules for high-temperature 
resins such as cyanate esters is passage through the 
vitrification point 
– Cure of vitrified samples often has the opposite of the 

intended effect (e.g. water uptake increases with further 
conversion, rather than decreases) 

– Because many high-temperature resins will cure 
significantly after vitrification, the assumption that industrial 
cure schedules always avoid it may need to be checked 

– Cure below the glass transition temperature is a significant 
issue for characterization of high-temperature composite 
resins, and can lead to significant over-estimates of thermo-
mechanical performance 

– Hot / wet performance is often the limiting factor for many 
thermosetting resin systems; both “knockdowns” and “wet” 
property values may be affected by in situ cure (this issue 
needs more attention).   Atlas V 

21 
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